

Il sistema costruttivo VESESISTEMA permette di realizzare pareti perimetrali di tamponamento con rivestimento termico a cappotto in modo innovativo.

Nello stesso tempo viene realizzata la parete con l'isolamento termico a cappotto in quanto i pannelli di coibentazione sono parte integrante e formano la parete stessa.

VELOCITÀ DI REALIZZAZIONE della parete nel suo complesso, considerando tutte le fasi di costruzione: tracciamento, formazione della struttura, isolamento termico a cappotto, riempimento della struttura con betoncino

ASSENZA DI PONTI TERMICI: l'isolamento termico viene realizzato con un sistema a CAPPOTTO formato da pannelli maschiati senza l'uso tasselli e quindi in totale assenza di ogni discontinuità superficiale

I pannelli del cappotto vengono posizionati senza l'uso di COLLA o TASSELLI, il sistema costruttivo garantisce una resistenza al vento maggiore di 600 Kg/m²

A parità di resistenza termica, lo SPESSORE delle pareti realizzate col VESESISTEMA è sensibilmente inferiore allo spessore delle pareti realizzate con altri sistemi costruttivi

La posa dei MARMI e FALSI TELAI è semplice e veloce

Alta RESISTENZA MECCANICA ottenuta grazie alla maglia metallica incrociata annegata nel betoncino

MOVIMENTAZIONE DEI CARICHI notevolmente ridotta in quanto gli elementi che compongono il sistema costruttivo (guide, montanti e pannelli) hanno un peso che si aggira attorno ai 2/3 Kg cad.

La realizzazione delle pareti può avvenire anche con TEMPERATURE SOTTO ZERO

Il sistema costruttivo è molto VERSATILE e FLESSIBILE lasciando molto spazio alla creatività

POSA DEI MONTANTI

Completata la posa delle guide, si prosegue con la collaborazione del primo montante fissato alla guida posta a pavimento e a soffitto. Tale fissaggio avviene con viti-auto-perforanti.

Posizionato il primo montante si possono fissare tutti gli altri ad un interasse di 60 cm uno dall'altro, facendo attenzione a tenere le alette di ancoraggio alla stessa quota.

La posa dei montanti, nel rispetto di quelle che sono le prescrizioni sopra riportate, viene facilitata dall'uso dell'apposita DIMA metallica

FORMAZIONE DI APERTURE

Con la struttura si possono creare le aperture con la posa dei falsi telai dei serramenti e la posa dei relativi davanzali e soglie.

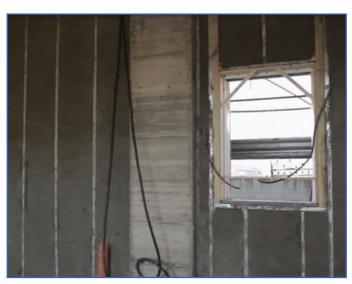
POSA DEI PANNELLI ISOLANTI

Il posizionamento dei pannelli in Eps, che può essere bianco o additivato con grafite, è molto rapido in quanto vengono agganciati alla struttura metallica senza l'uso di colle o tasselli.

La particolare conformazione dei pannelli assicura una perfetta adesione alla struttura anche in assenza di colle e tasselli, garantendo una resistenza al vento con pressione maggiore di 600 Kg/m² come certificato dall'Istituto Giodano S.p.A.

STRUTTURA COMPLETA

In questa fase si possono inserire eventuali impianti prima di colmare la struttura metallica con l'intonaco strutturale.



FINITURA INTERNA

In seguito al riempimento della struttura con il betoncino, si può completare la parete in due modi diversi, in funzione dell'utilizzo che si deve fare della parete stessa.

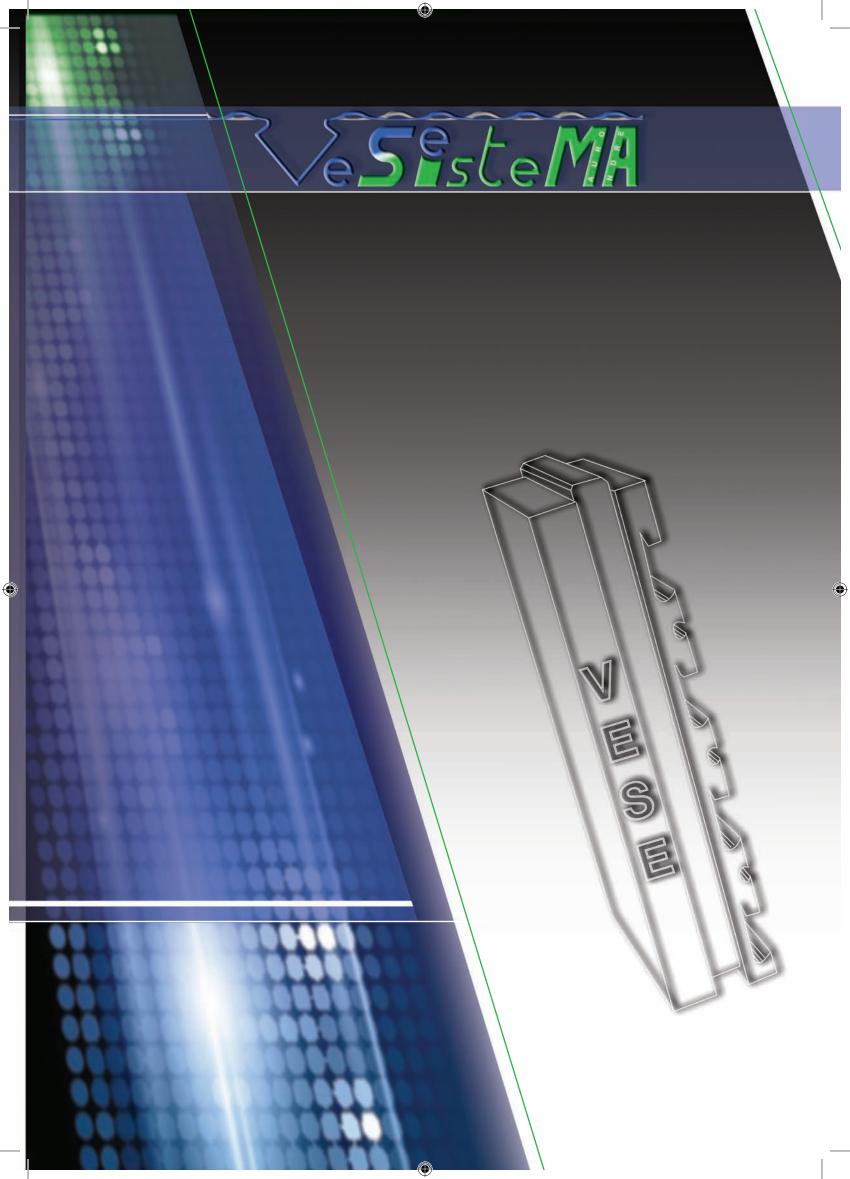
1

Parete con il semplice scopo di separazione, senza particolari esigenze di coibentazione termo-acustica: si completa la parte interna con collante o rasante, nel quale si annega la rete in fibra di vetro. Infine si rifinisce con malta tipo civile o gesso.

2

Parete con l'esigenza di raggiungere particolari resistenze termo-acustiche: si realizza la controparte con interposto un pannello isolante adequato.

FINITURA ESTERNA



La finitura esterna della parete viene eseguita come un comune cappotto: rasatura di colla con annegata rete in fibra di vetro e finitura superficiale con rivestimento colorato.

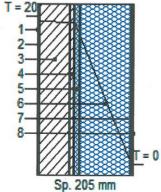
RESISTENZA TERMICA

La parete, completata con la semplice finitura interna, e quindi con uno spessore di circa **20 cm**, ottiene una trasmittanza termica, pari a

TRASMITTANZA = 0,234 W/m2k - EPS con GRAFITE

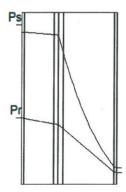
CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

Codice Struttura: Descrizione Struttura: VESESISTEMA-GRAFITE


CAPPOTTO-11+BETONCINO 6.5+1

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R	
	(dall'interno all'esterno)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]	
1	Adduttanza Interna	0		7.700			0	0.130	
2	Rasante plastico	5	0.900	180.000	6.00	8.500	1000	0.006	
3	BETONCINO	65	1.300	20.000	143.00	12.867	1000	0.050	
4	BETONCINO	9	1.300	144.444	19.80	12.867	1000	0.007	
5	Polistirene espanso in lastre stampate - EPS100-grafite	11	0.030	2.727	0.20	2.757	1200	0.367	
6	Polistirene espanso in lastre stampate - EPS100-grafite	110	0.030	0.273	1.98	2.757	1200	3.667	
7	Rasante plastico	5	0.900	180.000	6.00	8.500	1000	0.006	
8	Adduttanza Esterna	0		25.000			0	0.040	
	RESISTENZA = 4.271 m ² K/W					TRASMIT	TANZA = 0.234 \	W/m²K	
	SPESSORE = 205 mm	CADACITAL	TERMICA AREI	CA (int) = 70 02	C le I/m2le	MASSA SUDEDEIGIALE - 405 k-/2			

RESISTENZA = 4.271 m ² K/W		TRASMITTANZA = 0.234 W/m ² K
SPESSORE = 205 mm	CAPACITA' TERMICA AREICA (int) = 78.936 kJ/m²K	MASSA SUPERFICIALE = 165 kg/m ²
TRASMITTANZA TERMICA PERIODICA = 0.11 W/m²K	FATTORE DI ATTENUAZIONE = 0.48	SFASAMENTO = 5.09 h


s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i.

STRATIGRAFIA STRUTTURA

Ti [°C]

DIAGRAMMI DELLE PRESSIONI

URi [%]	Te [°C]	Pse [Pa]	Pre [Pa]	URe [%]					
52.0	0.0	611	549	90.0					

DIAGRAMMI DELLE PRESSIONI 20.0 2 337 1 215 52.0 0.0 611 549 90

Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te =

Pri [Pa]

Psi [Pa]

Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.

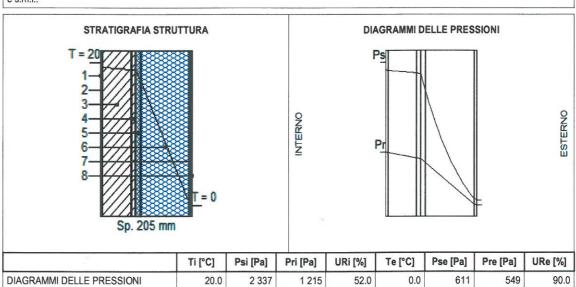
RESISTENZA TERMICA

La parete, completata con la semplice finitura interna, e quindi con uno spessore di circa **20 cm**, ottiene una trasmittanza termica, pari a

TRASMITTANZA = 0,263 W/m²k - EPS 120 - BIANCO

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

Codice Struttura:


VSESIST-EPS-120-BIAN

Descrizione Struttura:

CAPPOTTO-11+BETONCINO 6.5+1

N.	DESCRIZIONE STRATO	s	lambda	С	M.S.	P<50*10 ¹²	C.S.	R	
	(dall'interno all'esterno)	[mm]	[W/mK]	[W/m²K]	[kg/m²]	[kg/msPa]	[J/kgK]	[m²K/W]	
1	Adduttanza Interna	0		7.700			0	0.130	
2	Rasante plastico	5	0.900	180.000	6.00	8.500	1000	0.006	
3	BETONCINO	65	1.300	20.000	143.00	12.867	1000	0.050	
4	BETONCINO	9	1.300	144.444	19.80	12.867	1000	0.007	
5	Pannello VESESISTEMA- EPS 120 BIANCO	11	0.034	3.091	0.24	2.757	1340	0.324	
6	Pannello VESESISTEMA- EPS 120 BIANCO	110	0.034	0.309	2.42	2.757	1340	3.235	
7	Rasante plastico	5	0.900	180.000	6.00	8.500	1000	0.006	
8	Adduttanza Esterna	0		25.000			0	0.040	
RESISTENZA = 3.797 m ² K/W						TRASMIT	TANZA = 0.263	W/m²K	
SPESSORE = 205 mm		CAPACITA' TERMICA AREICA (int) = 78.953 kJ/m²K				MASSA SUPERFICIALE = 165 kg/m ²			
TRA	SMITTANZA TERMICA PERIODICA = 0.13 W/m²K	FAT	TORE DI ATTE	NUAZIONE = 0.4	3	SFASAMENTO = 5.19 h			

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i..

Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.

PARETE VESESISTEMA con CONTROPARETE

La parete di tamponamento VESESISTEMA, con EPS BIANCO, accoppiata con una semplice *controparete* composta da una lastra di cartongesso ed interposto un pannello in lana di roccia da 8 cm, raggiunge risultati *termo-acustici* molto elevati

Potere FONOISOLANTE Rw= 63 dB (Certificato pagine seguenti)

TRASMITTANZA = 0,163 W/m²k - EPS - BIANCO

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

Codice Struttura:

VSES-EPS120-BIA-CONT

Descrizione Struttura:

CAPPOTTO-11+BETONCINO 6.5+1

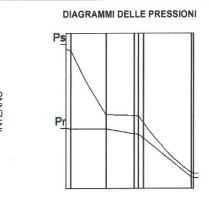
N.	DESCRIZIONE STRATO	s [mm]	lambda [W/mK]	C [W/m²K]	M.S. [kg/m²]	P<50*10 ¹² [kg/msPa]	C.S. [J/kgK]	R [m²K/W]
	(dall'interno all'esterno)							
1	Adduttanza Interna	0		7.700			0	0.130
2	Cartongesso in lastre	12	0.210	17.500	10.80	23.000	1000	0.057
3	Pannello rigido in lana di roccia 80kg/mc	80	0.035	0.438	6.40	193.000	1030	2.286
4	BETONCINO	65	1.300	20.000	143.00	12.867	1000	0.050
5	BETONCINO	9	1.300	144.444	19.80	12.867	1000	0.007
6	Pannello VESESISTEMA- EPS 120 BIANCO	11	0.034	3.091	0.24	2.757	1340	0.324
7	Pannello VESESISTEMA- EPS 120 BIANCO	110	0.034	0.309	2.42	2.757	1340	3.235
8	Rasante plastico	5	0.900	180.000	6.00	8.500	1000	0.006
9	Adduttanza Esterna	0		25.000	Ÿ.		0	0.040
	RESISTENZA = 6 134 m²K/W					TRASMIT	TANZA = 0.163	W/m²K

RESISTENZA = 6.134 m²K/W

SPESSORE = 292 mm

CAPACITA' TERMICA AREICA (int) = 13.512 kJ/m²K

MASSA SUPERFICIALE = 183 kg/m²


TRASMITTANZA TERMICA PERIODICA = 0.01 W/m²K

FATTORE DI ATTENUAZIONE = 0.05

SFASAMENTO = 8.14 h

s = Spessore dello strato; lambda = Conduttività termica del materiale; C = Conduttanza unitaria; M.S. = Massa Superficiale; P<50*10¹² = Permeabilità al vapore con umidità relativa fino al 50%; C.S. = Calore Specifico; R = Resistenza termica dei singoli strati; Resistenza - Trasmittanza = Valori di resistenza e trasmittanza reali; Massa Superficiale = Valore calcolato come disposto nell'Allegato A del D.Lgs.192/05 e s.m.i..

4	Ti [°C]	Psi [Pa]	Pri [Pa]	URi [%]	Te [°C]	Pse [Pa]	Pre [Pa]	URe [%]
DIAGRAMMI DELLE PRESSIONI	20.0	2 337	1 215	52.0	0.0	611	549	90.0

Ti = Temperatura interna; Psi = Pressione di saturazione interna; Pri = Pressione relativa interna; URi = Umidità relativa interna; Te = Temperatura esterna; Pse = Pressione di saturazione esterna; Pre = Pressione relativa esterna; URe = Umidità relativa esterna.

CERTIFICATO ACUSTICO

La parete, completata con la semplice finitura interna, e quindi con uno spessore di **19 cm**, ottiene una resistenza acustica pari a **Rw=37 dB**, come risulta dal certificato dell'Istituto Giordano

Superficie utile di misura del campione:

10,80 m²

Volume della camera emittente: 98.6 m³

Volume della camera ricevente: 92,2 m³

Esito della prova*:

Indice di valutazione a 500 Hz nella banda di frequenza comprese fra 100 Hz e 3150 Hz:

 $Rw = 37 dB^{**}$

Termini di correzione:

C = -1dB

 $C_{tr} = -3 \text{ db}$

(*) valutazione basata su risultati di misurazioni di laboratorio ottenuti mediante un metodo tecnico.

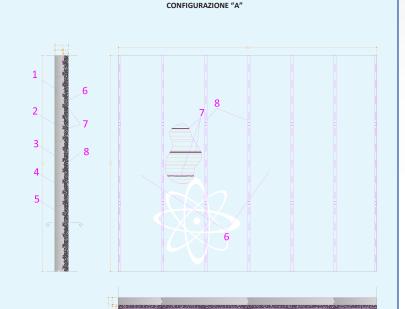
(**) indice di valutazione del potere fonoisolante elaborato procedendo a passi di 0,1 dB e incertezza di misura dell'indice di valutazione U (R...):

 $R_w = (37,2 \pm 0,4) dB$

 $R_w + C = (36,1 \pm 0,5) dB$

 $R_w + C_{tr} = (34.4 \pm 0.4) dB$

(Rapporto di prova n. 339442 del 27/01/2017)


segue - foglio n. 4 di 13

LAB Nº 002

CERTIFICATO ACUSTICO

Per ottenere una resistenza acustica di rilievo è sufficiente accoppiare una controparete con un pannello di cartongesso dello spessore di 12.5 mm ed interporre un pannello di lana di roccia da 80 mm con densità nominale 80Kg/mc.

Tale parete occupa uno spessore di circa **31 cm** e raggiunge una resistenza acustica di **Rw=63 dB** come risulta dal certificato dell'Istituto Giordano

Superficie utile di misura del campione:

10,80 m²

Volume della camera emittente: 98.6 m³

Volume della camera ricevente: 90,8 m³

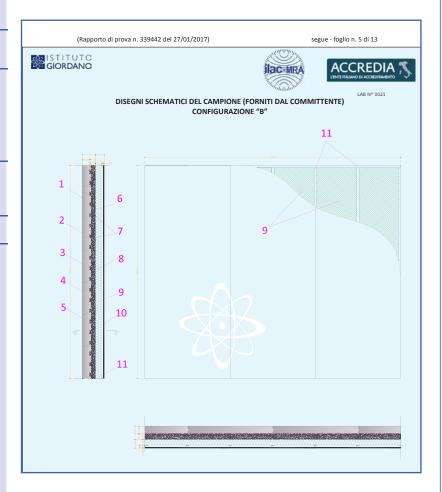
Esito della prova*:

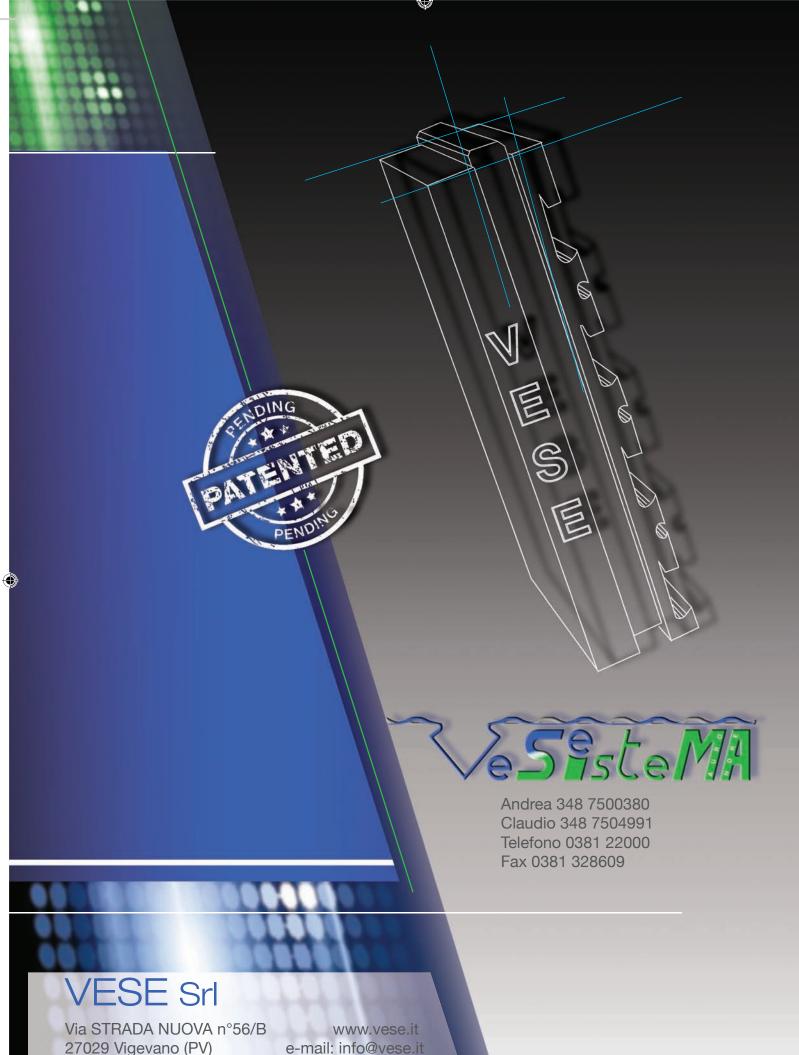
Indice di valutazione a 500 Hz nella banda di frequenza comprese fra 100 Hz e 3150 Hz:

 $Rw = 63 dB^{**}$

Termini di correzione:

C = -1dB


 $C_{tr} = -6 \text{ db}$


- (*) valutazione basata su risultati di misurazioni di laboratorio ottenuti mediante un metodo tecnico.
- (**) indice di valutazione del potere fonoisolante elaborato procedendo a passi di 0,1 dB e incertezza di misura dell'indice di valutazione U (R_w):

$$R_w = (63.7 \pm 0.9) dB$$

$$R_w + C = (62,0 \pm 1,0) dB$$

$$R_w + C_{tr} = (56.9 \pm 1.4) dB$$

Via STRADA NUOVA 27029 Vigevano (PV) C.F. e Partita IVA 0 1 7 1 7 7 0 0 1 8 9 www.vese.it e-mail: info@vese.it www.vesecostruzioni.it www.vesesistema.it